B-invexity and B-monotonicity of Non-differentiable Functions

Liya Fan, Fanlong Zhang*

School of Mathematics Sciences, Liaocheng University, Liaocheng, 252059, Shandong, P.R.China
fanliya63@126.com, zhangfanlong@qq.com

Abstract. Several new kinds of generalized B-invexity and generalized invariant B-monotonicity are introduced for non-differentiable functions. The relations among (quasi) B-preinvexity, (pseudo, quasi) B-invexity and invariant (pseudo, quasi) B-monotonicity are studied by using the Clarke’s subdifferential of non-differentiable functions and a series of examples. Some new results are obtained, which can be viewed as an extension of some known results.

Keywords: B-preinvexity, B-invexity, invariant B-monotonicity, Clarke’s subdifferential, relations.

1 Introduction

Convexity is a common assumption made in mathematical programming. There have been increasing attempts to weaken the convexity of objective functions, see for example [1-11] and references therein. An interested generalization for convexity is B-vexity, which was introduced and studied by Bector and Singh [4]. They studied some properties of B-vex functions in the settings of differentiable and non-differentiable, respectively. Later, B-preinvexity was introduced by Suneja et al. [5] as an extension of preinvexity and B-vexity. At the same time, B-vexity was generalized to pseudo (quasi) B-vexity and (pseudo, quasi) B-invexity in the setting of differential in [6]. Recently, B-vexity was studied by Li et al. [7] in the setting of non-differential and some necessary and sufficient results are obtained by means of the Clarke’s subdifferential.

* Corresponding Author. Email: zhangfanlong@qq.com.
A concept related to the convexity is the monotonicity of the mappings. In 1990, Karamardian and Schaible [8] studied the relations between the convexity of a real-valued function and the monotonicity of its gradient mapping. Yang et al. [9] and Jabarootian and Zafarani [10] investigated the relations between invexity and generalized invariant monotonicity in the settings of differentiable and non-differentiable, respectively.

Motivated and inspired by works in [7-9], in this paper, we will introduce several new notions of generalized B-invexity and generalized invariant B-monotonicity, which are called pseudo (quasi) B-invexity and invariant pseudo (quasi) B-monotonicity, and study the relations among (quasi) B-preinvexity, (pseudo, quasi) B-invexity and invariant (pseudo, quasi) B-monotonicity by means of the Clarke’s subdifferential of non-differentiable functions and a series of examples. Some new results are obtained, which can be viewed as an extension and improvement of corresponding results in [2,6,7,10].

2 Generalized B-invexity and Generalized Invariant B-monotonicity

Throughout this paper, let X be a real Banach space endowed with a norm $\| \cdot \|$ and dual space X^*. We denote by 2^X, $\{ \cdot \}$, $[x^1, x^2]$ and (x^1, x^2) the family of all nonempty subset of X^*, the dual pair between X and X^*, the line segment for $x^1, x^2 \in X$ and the interior of $[x^1, x^2]$, respectively. Let K be a nonempty subset of X, $\eta : K \times K \to X$ a vector valued mapping and $f : X \to R$ a function.

K is said to be an invex set with respect to η (see [1]) if for any $x^1, x^2 \in K$ and any $\lambda \in [0,1]$ one has $x^1 + \lambda \eta(x^2, x^1) \in K$.

From now on, unless otherwise specified, we assume that K is a nonempty invex set with respect to η.

Let f be locally Lipschitz continuous at $x \in X$ and v be an any other vector in X. The Clarke’s generalized directional derivative of f at x in the direction v is defined by $f^g(x; v) = \limsup_{t \to 0^+} \frac{f(x + tv) - f(x)}{t}$. The Clarke’s generalized subdifferential of f at x is defined by $\partial^c f(x) = \{ \xi \in X^* : f^g(x; v) \geq \langle \xi, v \rangle, \quad \forall v \in X \}$. As shown in [11], $\partial^c f(x)$ is a nonempty convex set and $f^g(x; v) = \max_{\xi \in \partial^c f(x)} \langle \xi, v \rangle$ for all $v \in X$.

Lemma 2.1 [11] (Mean-value theorem) Let $x^1, x^2 \in X$ and $f : X \to R$ be locally Lipschitz continuous near each point of a nonempty closed convex set containing the line segment $[x^1, x^2]$. Then there exist a point $u \in (x^1, x^2)$ and $\xi \in \partial^c f(u)$ such that $f(x^1) - f(x^2) = \langle \xi, x^1 - x^2 \rangle$.

In following, we will introduce the concepts of pseudo (quasi) B-invexity and of invariant pseudo (quasi) B-monotonicity.

Definition 2.1 Let $b : K \times K \times [0,1] \to R$, be a function. The function f is said to be

(i)[5,6] B-preinvex on K with respect to η and b if for any $x^1, x^2 \in K$ and any $\lambda \in [0,1]$ one has $f(x^2 + \lambda \eta(x^1, x^2)) \leq b(x^1, x^2, \lambda) f(x^1) + (1 - b(x^1, x^2, \lambda)) f(x^2)$;

(ii) quasi B-preinvex on K with respect to η and b if for any $x^1, x^2 \in K$ and any $\lambda \in [0,1]$ one has $f(x^1) \leq f(x^2)$ implies $b(x^1, x^2, \lambda) f(x^2 + \lambda \eta(x^1, x^2)) \leq b(x^1, x^2, \lambda) f(x^2)$.

GLOBAL INFORMATION PUBLISHER 113
From Definition 2.1, we can easily see that B-preinvexity implies quasi B-preinvexity with respect to the same \(\eta \) and \(b \). But the converse is not necessarily true, see the following example.

Example 2.1 Let \(X = \mathbb{R} \) and \(K = \left[0, \frac{\pi}{2} \right] \). For any \(x \in X \), \(x', x^2 \in K \), and \(\lambda \in [0, 1] \), let \(\eta(x', x^2) = \sin x' - \sin x^2 \) and

\[
f(x) = \begin{cases}
 x, & 0 < x < \frac{\pi}{2}, \\
 1, & x = \frac{\pi}{2}, \\
 0, & \text{otherwise},
\end{cases}
\]

\[
b(x', x^2, \lambda) = \begin{cases}
 0, & x' = \frac{\pi}{2} \text{ or } x^2 = \frac{\pi}{2} \text{ or } \lambda = 0, \\
 1, & \text{otherwise}.
\end{cases}
\]

We can verify that \(f \) is quasi B-preinvex on \(K \) with respect to \(\eta \) and \(b \). However, for \(x' = \frac{\pi}{2} \) and \(x^2 = \frac{\pi}{2} \), we have \(f(x' + \lambda \eta(x', x^2)) = \frac{\pi}{2} - \frac{\sqrt{2}}{4} \) and \(\lambda b(x', x^2, \lambda) f(x') + (1 - \lambda b(x', x^2, \lambda)) f(x^2) = 1 \), which indicates that \(f \) is not B-preinvex on \(K \) with respect to \(\eta \) and \(b \).

Definition 2.2 Let \(b : K \times K \to \mathbb{R} \) be a function. \(f \) is said to be

(i) B-invex on \(K \) with respect to \(\eta \) and \(b \) if for any \(x', x^2 \in K \) and any \(\xi \in \partial f(x^2) \) one has

\[
\langle \xi, \eta(x', x^2) \rangle \leq b(x', x^2) (f(x') - f(x^2));
\]

(ii) quasi B-invex on \(K \) with respect to \(\eta \) and \(b \) if for any \(x', x^2 \in K \) and any \(\xi \in \partial f(x^2) \) one has

\[
f'(x') \leq f(x^2) \implies b(x', x^2) \langle \xi, \eta(x', x^2) \rangle \leq 0;
\]

(iii) pseudo B-invex on \(K \) with respect to \(\eta \) and \(b \) if for any \(x', x^2 \in K \) and some \(\xi \in \partial f(x^2) \) one has

\[
\langle \xi, \eta(x', x^2) \rangle \geq 0 \implies b(x', x^2) f'(x') \geq b(x', x^2) f(x^2).
\]

From Definition 2.2, we can see that B-invexity implies quasi or pseudo B-invexity with respect to the same \(\eta \) and \(b \). But the converses are not necessarily true, see the following example.

Example 2.2 Let \(X = \mathbb{R} \) and \(K = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \). For any \(x \in X \) and \(x', x^2 \in K \) let \(f(x) = |x|, \eta(x', x^2) = \sin x' - \sin x^2 \) and

\[
b(x', x^2) = \begin{cases}
 1, & x'x^2 > 0, \\
 0, & x'x^2 \leq 0.
\end{cases}
\]

We can verify that \(f \) is quasi and pseudo B-invex on \(K \) with respect to \(\eta \) and \(b \). However, for \(x' = -\frac{\pi}{4}, x^2 = 0 \) and \(\xi = -1 \in \partial f(x') \) it follows that \(\langle \xi, \eta(x', x^2) \rangle > b(x', x^2) (f(x') - f(x^2)) \), which indicates that \(f \) is not B-invex on \(K \) with respect to \(\eta \) and \(b \).

Definition 2.3 Let \(b : K \times K \to \mathbb{R} \) be a function and \(F : X \to 2^X \) be a set-valued mapping. \(F \) is said to be

(i) invariant B-monotone on \(K \) with respect to \(\eta \) and \(b \) if for any \(x', x^2 \in K \) and any \(u \in F(x^2), v \in F(x') \) one has

\[
b(x', x^2) \langle u, \eta(x', x^2) \rangle + b(x', x^2) \langle v, \eta(x', x^2) \rangle \leq 0;
\]
(ii) invariant quasi B-monotone on K with respect to η and b if for any $x^1, x^2 \in K$, some $v \in F(x^1)$ and any $u \in F(x^2)$ one has $b(x^2, x^2)^T \langle v, \eta(x^1, x^2) \rangle > 0$ implies $b(x^1, x^1)^T \langle v, \eta(x^1, x^1) \rangle \leq 0$;

(iii) invariant pseudo B-monotone on K with respect to η and b if for any $x^1, x^2 \in K$, some $v \in F(x^1)$ and any $u \in F(x^2)$ one has $b(x^2, x^2)^T \langle v, \eta(x^1, x^2) \rangle > 0$ implies $b(x^1, x^1)^T \langle v, \eta(x^1, x^1) \rangle \leq 0$.

From Definition 2.3, we can see that invariant B-monotonicity implies invariant quasi B-monotonicity and invariant pseudo B-monotonicity implies invariant quasi B-monotonicity. But the converses are not necessarily true, see the following two examples.

Example 2.3 Let $X = R$ and $K = \left(\frac{\pi}{2} \right)$. For any $x \in X$ and $x^1, x^2 \in K$ let $f(x) = |x|, \eta(x^1, x^2) = \sin x^1 - \sin x^2$ and

$$b(x^1, x^2) = \begin{cases} 1, x^2 > 0, \\ 0, x^2 \leq 0. \end{cases}$$

We can verify that $\partial^c f$ is invariant quasi B-monotone on K with respect to η and b. However, for $x^1 = 0, x^2 = \frac{\pi}{4}, u = 1 \in \partial^c f(x^1)$ and any $v \in \partial^c f(x^2)$, due to $b(x^2, x^2)^T \langle v, \eta(x^1, x^2) \rangle + b(x^1, x^1)^T \langle v, \eta(x^1, x^1) \rangle > 0$, we can conclude that $\partial^c f$ is not invariant B-monotone on K with respect to η and b.

Example 2.4 Let $X = R$ and $K = \left(\frac{\pi}{2} \right)$. For any $x \in X$ and $x^1, x^2 \in K$ let $f(x) = -|x|, \eta(x^1, x^2) = \sin x^1 - \sin x^2$ and

$$b(x^1, x^2) = \begin{cases} 1, x^1 > 0, x^2 = 0, \\ 0, \text{ otherwise.} \end{cases}$$

We can verify that $\partial^c f$ is invariant quasi B-monotone on K with respect to η and b. However, for $x^1 = \frac{\pi}{4}, x^2 = 0, u = -1 \in \partial^c f(x^1)$ and any $v \in \partial^c f(x^2)$, we can conclude that $b(x^2, x^2)^T \langle v, \eta(x^1, x^2) \rangle \geq 0$ implies $b(x^1, x^1)^T \langle v, \eta(x^1, x^1) \rangle > 0$. Hence, $\partial^c f$ is not invariant pseudo B-monotone on K with respect to η and b.

3 Relations between (Quasi) B-preinvexity and (Pseudo, Quasi) B-invexity

In this section, we mainly study the relations between (quasi) B-preinvexity and (pseudo, quasi) B-invexity for a locally Lipschitz continuous function $f : X \rightarrow R$. For this purpose, we need the following assumptions, which are taken from [9].

Assumption A $f(x^2 + \eta(x^1, x^2)) \leq f(x^1), \forall x^1, x^2 \in K$.

Assumption C For any $x^1, x^2 \in K$ and any $\lambda \in [0, 1]$, one has $\eta(x^2, x^2 + \lambda \eta(x^1, x^1)) = -\lambda \eta(x^1, x^1)$ and $\eta(x^1, x^1 + \lambda \eta(x^1, x^1)) = (1 - \lambda) \eta(x^1, x^1)$.

Yang et al. [9] showed that if η satisfies Assumption C, then $\eta(x^2 + \lambda \eta(x^1, x^1), x^2) = \lambda \eta(x^1, x^1)$ for all $x^1, x^2 \in K$ and $\lambda \in [0, 1]$.

Theorem 3.1 Let

(i) $b : K \times K \times [0, 1] \rightarrow R$ be such that $b(x^1, x^2, \cdot)$ is continuous at 0^+ for any fixed $x^1, x^2 \in K$;
(ii) η and b be continuous with respect to the second argument, respectively;
(iii) \overline{b} be bounded, where $\overline{b}(x',x^2) = \lim_{\delta \downarrow 0} b(x',x^2,\lambda)$ for all $x',x^2 \in K$.

If f is B-preinvex on K with respect to η and b, then f is B-invex on K with respect to η and \overline{b}.

But the converse is not necessarily true.

Proof: For any given $x', x^2 \in K$ and $\epsilon > 0$, let L be the local Lipschitz constant of f at x^2. Then there exists a constant $0 < \delta < \frac{\epsilon}{2L}$ such that $|f(x') - f(x)| < \frac{\epsilon}{2}$ and $\|f(x',x^2) - f(x')\| < \frac{\epsilon}{2L}$ for all $x \in K$ with $|x^2 - x| < \delta$.

Consequently, for a small enough number $\lambda > 0$, one has

$$
\frac{f(x + \lambda \eta(x',x^2)) - f(x)}{\lambda} \\
\leq \frac{f(x + \lambda \eta(x',x)) - f(x)}{\lambda} + L\|\eta(x',x^2) - \eta(x',x)\| \\
\leq \frac{\lambda b(x',x,\lambda) f(x') + (1 - \lambda b(x',x,\lambda)) f(x) - f(x)}{\lambda} + L\|\eta(x',x^2) - \eta(x',x)\| \\
\leq b(x',x,\lambda)(f(x') - f(x)) + \frac{\epsilon}{2}(b(x',x,\lambda) + 1).
$$

Taking the limit as $\lambda \downarrow 0, \epsilon \downarrow 0$ and $x \to x^2$, since \overline{b} is bounded, we get $\langle \xi, \eta(x',x^2) \rangle \leq f''(x^2; \eta(x',x^2)) \leq \overline{b}(x',x^2)(f(x') - f(x^2))$ for all $\xi \in \partial f'(x^2)$, which shows that f is B-invex on K with respect to η and \overline{b}.

The following example shows that the converse is not true.

Example 3.1 Let $X = R$ and $K = \left\{ -\frac{\pi}{2}, \frac{\pi}{2} \right\}$. For any $x \in X, x', x^2 \in K$ and $\lambda \in [0,1]$, let $\eta(x',x^2) = \frac{x^2 - x^2}{3}$ and

$$f(x) = \begin{cases}
3x, & x \geq 0, \\
0, & x < 0,
\end{cases}
$$

$$b(x',x^2,\lambda) = \begin{cases}
1, & x^2 = 0, x' > 0, \\
\lambda, & x^2 = 0, x' \leq 0, \\
\frac{1}{3}x^2, & x' \neq 0.
\end{cases}
$$

Then

$$\overline{b}(x',x^2) = \begin{cases}
1, & x^2 = 0, x' > 0, \\
0, & x^2 = 0, x' \leq 0, \\
\frac{1}{3}x^2, & x' \neq 0.
\end{cases}
$$

We can verify that f is B-invex on K with respect to η and \overline{b}. However, for $x' = -\frac{\pi}{4}, x^2 = 0$ and $\lambda = \frac{1}{2}$, we can deduce that $f(x^2 + \lambda \eta(x',x^2)) = \lambda b(x',x^2,\lambda) f(x') + (1 - \lambda b(x',x^2,\lambda)) f(x^2)$. Hence,
f is not B-preinvex on K with respect to η and b.

Theorem 3.2 Let \(b : K \times K \to R_+ \). If \(f \) is B-invex on K with respect to \(η \) and \(b \) and satisfies Assumption C, then \(f \) is B-preinvex on K with respect to \(η \) and \(b \), where

\[
\overline{b}(x^1, x^2, λ) = \frac{b(x^1, x^2 + λη(x^1, x^2))}{λb(x^1, x^2 + λη(x^1, x^2)) + (1 - λ)b(x^1, x^2 + λη(x^1, x^2))}
\]

for all \(x^1, x^2 \in K \) and \(λ \in [0,1] \).

Proof: Take arbitrarily \(x^1, x^2 \in K \) and \(λ \in [0,1] \) and let \(x^0 = x^2 + λη(x^1, x^2) \). By the definition of B-invexity, for any \(ξ \in \partial f(x^0) \), we have

\[
\langle ξ, η(x^1, x^2) \rangle \leq b(x^1, x^0)(f(x^1) - f(x^0)), \tag{1}
\]

\[
\langle ξ, η(x^2, x^0) \rangle \leq b(x^2, x^0)(f(x^2) - f(x^0)). \tag{2}
\]

Multiplying (1) by \(λ \) and (2) by \((1 - λ) \) and adding them, by Assumption C, we can deduce that \(λb(x^1, x^0)f(x^1) + (1 - λ)b(x^2, x^0)f(x^2) \geq (λb(x^1, x^0) + (1 - λ)b(x^2, x^0))f(x^0) \), which implies that \(f(x^1 + λη(x^1, x^2)) \leq λ\overline{b}(x^1, x^2, λ)f(x^1) + (1 - λ\overline{b}(x^1, x^2, λ))f(x^2) \), where

\[
\overline{b}(x^1, x^2, λ) = \frac{b(x^1, x^2 + λη(x^1, x^2))}{λb(x^1, x^2 + λη(x^1, x^2)) + (1 - λ)b(x^1, x^2 + λη(x^1, x^2))}.
\]

Therefore, the assertion of the theorem holds.

The following two examples show that there are not direct implications between quasi B-invexity and quasi B-preinvexity.

Example 3.2 Let \(X = R \) and \(K = \left(-\frac{π}{2}, \frac{π}{2}\right) \). For any \(x \in X, x^1, x^2 \in K \) and \(λ \in [0,1] \) let \(f(x) = -|x| \) and

\[
η(x^1, x^2) = \begin{cases}
\sin x^1 - \sin x^2, & x^1x^2 \geq 0, \\
0, & x^1x^2 < 0,
\end{cases}
\]

\[
b(x^1, x^2, λ) = \begin{cases}
1, & x^1x^2 \geq 0, \\
λ, & x^1x^2 < 0.
\end{cases}
\]

Then

\[
\overline{b}(x^1, x^2) = \lim_{h \to 0} b(x^1, x^2, λ) = \begin{cases}
1, & x^1x^2 \geq 0, \\
0, & x^1x^2 < 0.
\end{cases}
\]

We can verify that \(f \) is quasi B-preinvex on K with respect to \(η \) and \(b \). For \(x^1 = -\frac{π}{4}, x^2 = 0 \) and \(ξ = -1 \in \partial f(x^1) \), we can deduce that \(f(x^1) \leq f(x^2) \) implies \(\overline{b}(x^1, x^2)\langle ξ, η(x^1, x^2) \rangle > 0 \). Hence, \(f \) is not quasi B-invex on K with respect to \(η \) and \(b \).
Example 3.3 $X = R$ and $K = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$. For any $x \in X, x' \in K$ and $\lambda \in [0,1]$ let $f(x) = -|x|$, $\eta(x', x^2) = \sin x^1 - \sin x^2$ and

$$
\begin{aligned}
\tau(x', x^2, \lambda) &= \begin{cases}
1, & x^1 x^2 > 0, \\
0, & x^1 x^2 \leq 0.
\end{cases}
\end{aligned}
$$

Then

$$
\tau(x', x^2) = \lim_{\lambda \downarrow 0} \tau(x', x^2, \lambda) = \begin{cases}
1, & x^1 x^2 > 0, \\
0, & x^1 x^2 \leq 0.
\end{cases}
$$

We can verify that f is quasi B-invex on K with respect to η and τ. However, for $x^1 = \frac{\pi}{4}, x^2 = -\frac{\pi}{6}$ and $\lambda = \frac{1}{2}$, since $f(x^1) \leq f(x^2)$ implies $\tau(x^1, x^2, \lambda) f(x^1 + \lambda \eta(x^1, x^2)) > \tau(x^1, x^2, \lambda) f(x^2)$, we can conclude that f is not quasi B-preinvex on K with respect to η and τ.

Theorem 3.3 Let

(i) $b : K \times K \times [0,1] \rightarrow R_+$ be such that $b(x', x^2, \cdot)$ is continuous at 0^+ for any fixed $x^1, x^2 \in K$;

(ii) η and b be continuous with respect to the second argument, respectively;

(iii) b be bounded, where $b(x', x^2) = \lim_{x \rightarrow x', \lambda \downarrow 0} b(x^2, x, \lambda)$ for all $x^1, x^2 \in K$.

If f is quasi B-preinvex on K with respect to η and b, then for any $\xi \in \partial^* f(x^1)$ we have

$$
f(x^2) < f(x^1) \Rightarrow \tau(x^1, x^2) \left\{ \xi, \eta(x^2, x^1) \right\} \leq 0.
$$

Proof: Let $x^1, x^2 \in K$ with $f(x^2) < f(x^1)$ and $L > 0$ be the local Lipschitz constant of f at x^1. By the continuity of f at x^1, we know that there exists a constant $\delta > 0$ such that $f(x^2) < f(x)$ for all $x \in X$ with $\|x - x^1\| < \delta$. For any $\lambda \in [0,1]$ and any $x \in K$ with $\|x - x^1\| < \delta$, by the quasi B-preinvexity of f, we have $b(x^2, x, \lambda)f(x + \lambda \eta(x^2, x)) \leq b(x^2, x, \lambda)f(x)$. Consequently,

$$
\begin{aligned}
b(x^2, x, \lambda)f(x + \lambda \eta(x^2, x)) - f(x) \\
&\leq b(x^2, x, \lambda)\left\{ \frac{f(x + \lambda \eta(x^2, x)) - f(x)}{\lambda} + L\|\eta(x^2, x) - \eta(x^1, x^1)\| \right\} \\
&\leq b(x^2, x, \lambda)L\|\eta(x^2, x) - \eta(x^1, x^1)\|.
\end{aligned}
$$

Taking the limit for the last inequality as $x \rightarrow x^1$ and $\lambda \downarrow 0$, since b is bounded, we get $\tau(x^2, x') f^0(x^1; \eta(x^2, x')) \leq 0$ and then $\tau(x^2, x') \left\{ \xi, \eta(x^2, x^1) \right\} \leq 0, \forall \xi \in \partial^* f(x^1)$, which indicates that the assertion of the theorem holds.

Theorem 3.4 Let $b : K \times K \rightarrow R_+$ be continuous with respect to the second argument. If f is quasi B-invex on K with respect to η and b and satisfies Assumption C, then f is quasi B-preinvex on K with respect to η and b, where $b(x^2, x^2, \lambda) = b(x^1, x^2 + \lambda \eta(x^1, x^2))b(x^2, x^2 + \lambda \eta(x^1, x^2))$ for all $x^1, x^2 \in K$ and $\lambda \in [0,1]$.

Proof: Take arbitrarily $x^1, x^2 \in K$ and let $f(x^1) \leq f(x^2)$. In order to show that f is quasi B-preinvex on K, it suffices to prove that the set
\[\Omega = \{ x^2 + \lambda \eta(x^1, x^2) : \bar{f}(x^1, x^2, \lambda) f(x^1, x^2, \lambda) > \bar{f}(x^1, x^2, \lambda) f(x^1, x^2, \lambda), \lambda \in [0, 1] \} \]

is empty. It is evident that \(\Omega \) is equivalent to the set
\[\Omega' = \{ x^2 + \lambda \eta(x^1, x^2) : f(x^2 + \lambda \eta(x^1, x^2)) > f(x^2), \bar{f}(x^1, x^2, \lambda) > 0, \lambda \in [0, 1] \} . \]

Assume to the contrary that \(\Omega' \neq 0 \). By the continuity of \(f \), we know that the set
\[\Omega'' = \{ x^2 + \lambda \eta(x^1, x^2) : f(x^2 + \lambda \eta(x^1, x^2)) > f(x^2), \bar{f}(x^1, x^2, \lambda) > 0, \lambda \in [0, 1] \} \]
is nonempty. Consequently, for every \(\tau \in \Omega'' \), there exist \(\lambda \in (0, 1) \) such that \(\tau = x^2 + \lambda \eta(x^1, x^2) \), \(\bar{f}(x^1, x^2, \lambda) > 0 \) and \(f(\bar{\tau}) > f(\tau) \). For any \(\xi \in \partial^c f(\bar{\tau}) \), by the quasi-B-invexity of \(f \), it follows that
\[\begin{align*}
\langle \xi, \eta(x^1, x^2) \rangle &\leq 0 \quad \text{and} \quad b(x^1, x^2) \langle \xi, \eta(x^1, x^2) \rangle = 0,
\end{align*} \]
which together with Assumption C shows that \(b(x^1, x^2)\eta(x^1, x^2) = 0 \), which is a contradiction. Hence, the assertion of the theorem holds.

4 Relations between Generalized B-invexity and Generalized Invariant B-monotonicity

In this section, we mainly study the relations between (pseudo, quasi) B-invexity of a locally Lipschitz continuous function \(f \) and invariant (pseudo, quasi) B-monotonicity of its subdifferential mapping \(\partial^c f \).

The following result is a direct consequence of Definition 2.1.

Theorem 4.1 Let \(b : K \times K \to R \). If \(f \) is B-invex on \(K \) with respect to \(\eta \) and \(b \), then \(\partial^c f \) is invariant B-monotone on \(K \) with respect to the same \(\eta \) and \(b \).

Theorem 4.2 Let \(b : K \times K \to R_+ \). If \(\partial^c f \) is invariant B-monotone on \(K \) with respect to \(\eta \) and \(b \) and satisfies Assumptions A and C, then there exists a function \(\lambda : K \times K \to (0, 1) \) such that \(f \) is B-invex on \(K \) with respect to \(\eta \) and \(\bar{b} \), \(\bar{b}(x^1, x^2) = \frac{b(x^1, x^2 + \lambda(x^1, x^2) \eta(x^1, x^2), x^1)}{b(x^1, x^2 + \lambda(x^1, x^2) \eta(x^1, x^2), x^1)} \) for all \(x^1, x^2 \in K \).

Proof: Let \(\partial^c f \) be invariant B-monotone on \(K \). For any \(x^1, x^2 \in K \), by Assumption A and Lemma 2.1, there exist a constant related to \(x^1, x^2 \) in \((0, 1) \), denoted by \(\lambda(x^1, x^2) \), and a point \(\bar{\xi} \in \partial^c f(x^0) \) such that
\[f(x^1) - f(x^2) \leq f(x^1) - f(x^2 + \eta(x^1, x^2)) = -\langle \bar{\xi}, \eta(x^2, x^1) \rangle, \]
where \(x^0 = x^1 + \lambda(x^1, x^2) \), \(\eta(x^1, x^2) \). By Assumption C, for any \(v \in \partial^c f(x^1) \), it follows that \(b(x^0, x^1)\langle \bar{\xi}, \eta(x^1, x^2) \rangle \geq b(x^1, x^0)\langle u, \eta(x^1, x^2) \rangle \)
and then
\[b(x^0, x^1)(f(x^2) - f(x^1)) \geq b(x^1, x^0)\langle u, \eta(x^1, x^2) \rangle \]
which is equivalent to

\[\frac{b(x^0, x^1)}{b(x^0, x^0)} (f(x^0) - f(x^1)) \geq \langle \nu, \eta(x^0, x^1) \rangle. \]

The last inequality shows that \(f \) is B-invex on \(K \) with respect to \(\eta \) and \(\bar{b} \).

The following result is a direct consequence of Definition 2.2.

Theorem 4.3 Let \(b : K \times K \rightarrow \mathbb{R}_+ \). If \(f \) is quasi B-invex on \(K \) with respect to \(\eta \) and \(b \), then \(\partial^c f \) is invariant quasi B-monotone on \(K \) with respect to \(\eta \) and \(\bar{b} \), where \(\bar{b}(x^1, x^2) = b(x^2, x^1) \) for all \(x^1, x^2 \in K \). But the converse is not necessarily true for same \(\eta \) and \(b \).

Example 4.1 Let \(X, K, f, \eta \) and \(b \) be the same as in Example 2.4. Then \(\partial^c f \) is invariant quasi B-monotone on \(K \) with respect to \(\eta \) and \(b \). However, for \(x^1 = -\pi, x^2 = 0 \) and \(\xi = -1 \in \partial^c f(x^2) \), we can deduce that \(f(x^1) \leq f(x^2) \) implies \(b(x^1, x^2)((\xi, \eta(x^1, x^2))) = 4 \). This shows that \(f \) is not quasi B-invex on \(K \) with respect to \(\eta \) and \(b \).

Theorem 4.4 Let \(b : K \times K \rightarrow \mathbb{R} \). If \(\partial^c f \) is invariant pseudo B-monotone on \(K \) with respect to \(\eta \) and \(b \) and satisfies Assumptions A and C, then there exists a function \(\lambda : K \times K \rightarrow (0, 1) \) such that \(f \) is pseudo B-invex on \(K \) with respect to \(\eta \) and \(\bar{b} \), where \(\bar{b}(x^1, x^2) = b(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) \) for all \(x^1, x^2 \in K \).

Proof: Take arbitrarily \(x^1, x^2 \in K \). For \(x^2 + \eta(x^1, x^2) \), by Lemma 2.1, there exist a constant related to \(x^1, x^2 \) in \((0, 1) \), denoted by \(\lambda(x^1, x^2) \), and a point \(u \in \partial^c f(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) \) such that

\[f(x^2 + \eta(x^1, x^2)) - f(x^2) = \langle u, \eta(x^1, x^2) \rangle, \quad (4) \]

Assume to the contrary that the assertion of the theorem is not true. Then there exist \(x^1, x^2 \in K \) such that

\[\langle u, \eta(x^1, x^2) \rangle \geq 0, \forall \nu \in \partial^c f(x^2), \quad (5) \]

and \(\bar{b}(x^1, x^2) f(x^1) < \bar{b}(x^1, x^2) f(x^2) \), which shows that \(f(x^1) < f(x^2) \). By Assumption A and (4), we have \(b(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) u(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) < 0 \). By Assumption C, we get \(b(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) \langle u, \eta(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) \rangle > 0 \) By the invariant pseudo B-monotonicity of \(\partial^c f \), for some \(\omega \in \partial^c f(x^2) \), we obtain

\[b(x^2 + \lambda(x^1, x^2)) \eta(x^1, x^2) \omega(x^1, x^2) \langle \omega, \eta(x^1, x^2) \rangle < 0 \]

which implies that \(\langle \omega, \eta(x^1, x^2) \rangle < 0 \). This contradicts (5). Therefore, the assertion of the theorem holds.

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC No. 10871226).
References