η-Pseudolinearity and Efficiency

Giorgio Giorgi¹, Norma G. Rueda²*

¹ Section of General and Applied Mathematics, Faculty of Economics, University of Pavia, 27100 Pavia, Italy
² Department of Mathematics, Merrimack College, North Andover MA 01845, USA
Norma.Rueda@merrimack.edu

Abstract: Given a nonlinear vector-valued programming problem involving generalized pseudolinear functions (i.e. η-pseudolinear functions) it is shown that every efficient solution is properly efficient under some boundedness condition.

Key words: nonlinear programming, η-pseudoconvex function, η-pseudolinear function, efficiency, proper efficiency.

1 Introduction

A real-valued differentiable function defined on an open set D in \mathbb{R}^n is said to be pseudolinear if f and $-f$ are pseudoconvex. Hanson [5] introduced the class of functions f with the following property:

$$f(y) - f(x) \geq \nabla f(x)^\top \eta(y, x) \text{ for all } x, y \in D,$$

for a vector function $\eta(y, x)$, as a generalization of convex functions. Later those functions were known as η-convex or invex. Hanson [5] also introduced a more general class of functions defined as follows:

$$\nabla f(x)^\top \eta(y, x) \geq 0 \text{ implies } f(y) \geq f(x) \text{ for all } x, y \in D.$$

* Corresponding Author. Tel.: 978-837-3465, Fax: 978-837-5029, Email: Norma.Rueda@merrimack.edu.
Such functions were later called η-pseudoconvex or pseudoinvex. The reader may consult Mishra and Giorgi [7] for a recent survey of invex functions and their generalizations.

If $\eta(y,x) = y - x$, then the definitions of η-convexity and η-pseudoconvexity reduce to the definitions of convexity and pseudoconvexity, respectively. We note that, unlike convex and pseudoconvex functions, the class of invex functions and the class of pseudoinvex functions coincide.

Definition 1. (Ansari et al. [1]). A differentiable function f defined on an open set D in \mathbb{R}^n is called η-pseudolinear if f and $-f$ are η-pseudoconvex with respect to the same η.

Every pseudolinear function is η-pseudolinear with respect to $\eta(y,x) = y - x$, but the converse is not true. Ansari et al. [1] gave an example of functions f and η that showed that a function f can be η-pseudolinear without being pseudolinear.

Chew and Choo [2] obtained first and second order characterizations of pseudolinear functions and found conditions for an efficient solution of a nonlinear vector-valued programming problem to be proper efficient. Kaul et al. [4] extended the class of pseudolinear functions to semilocally pseudolinear functions and discussed conditions of efficiency and properly efficiency for a multiobjective programming problem. Later Ansari et al. [1] obtained the following first order characterizations of η-pseudolinear functions, generalizing some of the results obtained by Chew and Choo [2]. First we need the following definition, due to Mohan and Neogy [8]. The vector-valued function $\eta : D \times D \to \mathbb{R}^n$, satisfies condition C if for any $x, y \in D$,

\[
\eta(x, y + \lambda \eta(x, y)) = -\lambda \eta(y, x),
\]

\[
\eta(y, x + \lambda \eta(y, x)) = (1 - \lambda) \eta(y, x)
\]

for all $\lambda \in [0,1]$.

Suppose that $f : D \to \mathbb{R}$ is η-pseudolinear, with η satisfying condition C. Then for all $x, y \in D$, $\nabla f(x)\T \eta(y, x) = 0$ if and only if $f(y) = f(x)$.

A differentiable function $f : D \to \mathbb{R}$ is η-pseudolinear if and only if there exists a function p, called proportional functional, defined on $D \times D$ such that $p(x, y) > 0$ and $f(y) = f(x) + p(x, y)$ $\nabla f(x)\T \eta(y, x)$ for all $x, y \in D$.

In this paper we are going to consider the following multiobjective programming problem:

maximize $f(x) = (f_i(x), \ldots, f_j(x))$, subject to $g_j(x) \leq h_j$, $j = 1, \ldots, m$, involving η-pseudolinear functions f_i and g_j, and we are going to show that for a feasible point x^0 in the feasible region to be efficient it is necessary and sufficient that the Kuhn-Tucker conditions hold for the function $\lambda_1 f_1 + \cdots + \lambda_k f_k$ for some positive multipliers $\lambda_1, \ldots, \lambda_k$. That is, there exist multipliers $\mu_1, \ldots, \mu_m \geq 0$ such that

\[
\lambda_1 \nabla f_1(x^0) + \cdots + \lambda_k \nabla f_k(x^0) = \mu_1 \nabla g_1(x^0) + \cdots + \mu_m \nabla g_m(x^0),
\]

and

\[
\mu_j (g_j(x^0) - h_j) = 0, j = 1, \ldots, m.
\]

We are also going to show that every efficient solution that satisfies a certain boundedness condition is properly efficient.
2 Efficiency

Consider the following multiobjective η-pseudolinear programming problem:

\[
(P) \quad \text{V-maximize } f(x) = \left(f_1(x), \ldots, f_k(x) \right) \\
\text{subject to } g_j(x) \leq b_j, \ j = 1, \ldots, m,
\]

where the differentiable functions f_i and g_j are η-pseudolinear on the open set $D \subseteq \mathbb{R}^n$, with proportional functionals p_j and q_j, respectively. Let X be the set of feasible points for problem (P).

Definition 2. A feasible point x is said to be an efficient solution of (P) if $f_i(x) \leq f_i(y)$ for all feasible y. In other words, there is no other feasible y such that, for some $i = 1, 2, \ldots, k$, we have $f_i(x) < f_i(y), f_j(x) \leq f_j(y), \forall s \neq i$.

Geoffrion [3] introduced the concept of proper efficiency for the maximization problem V-maximize $f(x)$ subject to $x \in X \subseteq \mathbb{R}^n$.

Definition 3. A feasible point x is properly efficient if it is efficient and there exists a real number $M > 0$ such that, for each i, we have

\[
f_i(y) - f_i(x) \leq M (f_j(x) - f_j(y))
\]

for some j such that $f_j(x) > f_j(y)$ whenever $f_j(y) > f_i(x)$.

The following result generalizes Proposition 3.2 of (Chew and Choo [2]) to η-pseudolinearity.

Proposition 1. Consider problem (P) where the differentiable functions f_i and g_j $(i = 1, \ldots, k; j = 1, \ldots, m)$ are η-pseudolinear on the set $D \subseteq \mathbb{R}^n$ with proportional functionals p_j and q_j, respectively. Let condition C be satisfied for all $x, y \in D$. A feasible point x^0 is an efficient solution of (P) if and only if there exist multipliers $\lambda_i > 0$ and $\mu_j \geq 0$, $i = 1, 2, \ldots, k, j \in I(x^0) = \{ j \mid g_j(x^0) = b_j \}$ such that

\[
\sum_{i=1}^{k} \lambda_i \nabla f_i(x^0) = \sum_{j \in I(x^0)} \mu_j \nabla g_j(x^0).
\]

Proof: Suppose that there exist λ_i and μ_j that satisfy (1), but x^0 is not efficient. Then there exists a feasible point y such that $f_i(x^0) \leq f_i(y)$ for all i and $f_s(x^0) < f_s(y)$ for some s. Then

\[
0 \geq \sum_{j \in I(x^0)} \frac{\mu_j (g_j(y) - g_j(x^0))}{q_j(x^0, y)} = \sum_{j \in I(x^0)} \mu_j \nabla g_j(x^0)^T \eta(y, x^0) \\
= \sum_{i=1}^{k} \lambda_i \nabla f_i(x^0)^T \eta(y, x^0) = \sum_{i=1}^{k} \frac{\lambda_i (f_i(y) - f_i(x^0))}{p_i(x^0, y)} > 0,
\]

which is a contradiction.

Conversely, suppose that x^0 is an efficient solution for (P). For $1 \leq r \leq k$, the system
\[
\begin{align*}
\nabla g_j(x^0)^T \eta(x, x^0) & \leq 0 \quad j \in I(x^0) \\
\nabla f_i(x^0)^T \eta(x, x^0) & \geq 0 \quad i = 1, 2, \ldots, r-1, r+1, \ldots, k \\
\n\nabla f_r(x^0)^T \eta(x, x^0) & > 0
\end{align*}
\]

(3)

has no solution \(x \in X \). Suppose there exist \(y \) such that

\[
\begin{align*}
\nabla g_j(x^0)^T \eta(y, x^0) & \leq 0 \quad j \in I(x^0) \\
\nabla f_i(x^0)^T \eta(y, x^0) & \geq 0 \quad i \neq r \\
\n\nabla f_r(x^0)^T \eta(y, x^0) & > 0.
\end{align*}
\]

Then \(g_j(y) \leq g_j(x^0), f_i(y) \geq f_i(x^0), i \neq r \) and \(f_r(y) \geq f_r(x^0) \) but \(f_r(y) \neq f_r(x^0) \) since \(f_r(y) = f_r(x^0) \) if and only if \(\nabla f_r(x^0)^T \eta(y, x^0) = 0 \). Therefore \(f_r(y) > f_r(x^0) \), which contradicts that \(x^0 \) is an efficient solution. It follows that (3) has no solution. By Farkas' lemma (Mangasarian [6]), there exist \(\lambda_j \geq 0 \) and \(\mu_r \geq 0 \) such that

\[
\sum_{i \neq r} \lambda_i \nabla f_i(x^0) + \nabla f_r(x^0) = \sum_{j \geq 1} \mu_j \nabla g_j(x^0).
\]

Summing over \(r \) we get (1) with \(\lambda_i = 1 + \sum_{i \neq r} \lambda_i \) and \(\mu_j = \sum_{i \neq r} \mu_j \).

Chew and Choo [2] proved that efficiency and properly efficiency are equivalent under certain conditions for a particular case of problem (P) when the functions involved are pseudolinear. We are going to show that the same is true for \(\eta \)-pseudolinear functions.

Definition 4. (Chew and Choo [2]). A feasible point \(x^0 \) is said to satisfy the **boundedness condition** if the set

\[
\left\{ \frac{p_i(x^0, x)}{p_j(x^0, x)} \mid x \in X, f_i(x^0) < f_j(x), f_j(x^0) > f_j(x), 1 \leq i, j \leq k \right\}
\]

(4)

is bounded from above.

Proposition 2. Assume the same hypotheses as in Proposition 1. Then every efficient solution of (P) that satisfies the boundedness condition is properly efficient.

Proof: Let \(x^0 \) be an efficient solution of (P). Then it follows from Proposition 1 that there exist \(\lambda_j > 0 \) and \(\mu_j \geq 0 \) such that \(\sum_{i=1}^k \lambda_i \nabla f_i(x^0) = \sum_{j \geq 1} \mu_j \nabla g_j(x^0) \). Therefore for any feasible \(x \),

\[
\sum_{i=1}^k \lambda_i \nabla f_i(x^0)^T \eta(x, x^0) = \sum_{j \geq 1} \mu_j \nabla g_j(x^0)^T \eta(x, x^0).
\]

Notice that

\[
\sum_{i=1}^k \lambda_i \nabla f_i(x^0)^T \eta(x, x^0) \leq 0.
\]

(5)

Otherwise, we would obtain a contradiction as in (2), Proposition 1.
Since the set defined by (4) is bounded from above, the following set is also bounded from above:

\[
\left\{ (k-1) \frac{\lambda_i p_i(x^0, x)}{\lambda_j p_j(x^0, x)} \mid x \in X, f_i(x^0) < f_i(x), f_j(x^0) > f_j(x), 1 \leq i, j \leq k \right\}.
\]

(6)

Let \(M \) be a positive real number that is an upper bound of the set defined by (6). We are going to show that \(x^0 \) is properly efficient.

Suppose that there exist \(r \) and \(x \in X \) such that \(f_r(x) > f_r(x^0) \). Then

\[
\nabla f_r(x^0)^{\top} \eta(x, x^0) > 0.
\]

(7)

Let

\[
-\lambda \nabla f_r(x^0)^{\top} \eta(x, x^0) = \max \left\{ -\lambda \nabla f_r(x^0)^{\top} \eta(x, x^0) \mid \nabla f_r(x^0)^{\top} \eta(x, x^0) < 0 \right\}.
\]

(8)

From (5), (7), and (8), we obtain

\[
\lambda \nabla f_r(x^0)^{\top} \eta(x, x^0) \leq (k-1)(-\lambda \nabla f_r(x^0)^{\top} \eta(x, x^0)).
\]

Therefore

\[
f_r(x) - f_r(x^0) \leq (k-1) \frac{\lambda_i p_i(x^0, x)}{\lambda_j p_j(x^0, x)} (f_j(x^0) - f_j(x)),
\]

and given the choice of \(M \),

\[
f_r(x) - f_r(x^0) \leq M (f_j(x^0) - f_j(x)).
\]

Thus, \(x^0 \) is properly efficient.

References